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EXACT SOLUTIONS FOR LIFTING SURFACES

P. F. Jordan':

RIIAS, Martin Mariveta Corp., Baltimore, Md.

The obstacle which has prevented the determpination of exact lifting

surfaco solutions was the singularity at the wing tip. This problem has now 1been

solved analytically for the circular wing and thereby, to an extent, for wings with

parabolic wing tips in general,. The paper reports the analytical results. It

describes how numerical solutions for tfhe. circular wing car, conveniently be cal-

culated if only engineering accuracy is required. Four linearly independent solu-

tions -have been determined to very high accuracy and are listed in tables; the tables

are short since it is possible to split off the singularity. The samples confirm some

expectcd and provide some unexpected insights into the mnchanisrm of lifting flow.

Research here reported was sponsored by tho Air Force Office of Scientific Research

(AFSC), United States Air Force, under Contract F44620-69-C..0096.

Principal Research Scientist
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1. Introductio4 n

A great deal ot work has been and is being dcne, mamny papers havE, beeni

publishlic-, and niany co-aiputor programs are available concerned with calculating

pressure distributions over lifting wvings of finite aspect ratio. Neverthcless, the

state of thc art is not satisfactory. New approachcs continue to be proposed, not

only because of various complications in the wing model, bvt largely due to inherent

difficulties which arnuo froni singularitics in the mathenmatical formulation of the

problem. Consider here only the basic engineering model, the thin lifting surface

in steady linear subsonic (hcnce, by the Prandtl-Glaucrt trznnoformation, incoin-

prebsible) flow'. No exact solution for any problem of this s.rpe has been available.

Availalle numerical mit-hods are approximative collocation, incthods. The agrcremnt

between calculated renult and experiment is often satisfact,,• y; on the other hand,

there are exceptlons. Then, in the absence of n exact sltl.i-on for the necessarily

idealized molel of thy analysis, there is no criterion by wl I.elh to determine if (he

fault lies with either the Idkalizations in the model or the inaccuracies of the colloca-

tion method, The temptation is to blame the nmodel, but div.'rgencies continue to

occur in, and bctteen, collocation analyses for a given Hadul, hence efforts to

improve collocation analysis continue.

The present papcr does unot deal with collocation analyses. Its purpose is to

make ceact .,olutiora readily v-ailable - -rot exact solutions for all possible engineering
models, of course, but exact solution for the basic model i:n the shape of a circular

wing. The:;c solut•uns describe the pressure singularity th.t arises on a parabolic

tip of a wing of any aspect ratio (one of the hitherto unresolved fundamental problems

of potential flow theory) but they are useful beyond this somewhat academic point.

They c;, be used to check the reliability of a given collocaton method. They can also

provide, sometimes by r.eans of a very brief and straightfa.ý7ward calculation, reliable

Uisights into the mechanism of lifting flo,/ whicb would be very difficult and cumber -

co some to lerive co,,vineingly with a collocation analysis. Tc.. an extent, they can be
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generalized to other wing planforms. Furthermore, they allow *ne to calculate

the initial vortex trail exactly.

Our exact solution is based on a formulation| by Kinner which has been avail-

able since 1937. Prandtl had pointed out that the then new acceleration potential

approach would permit o.,e to obtain exact solutions (it no longer required a priori

assumptions about the shape of the trailing vortex sheet). The circular wing in

incompressible flow appeared to be a suitable model. Kinner 2 formulated the

analysis and succeeded in determining overall lift and moment. However, the

Kinner results appear to diverge toward the wing tips, and the formulation appeared

to be too cumbersome to be of much practical value.

Actually, solutions of the Kirnner formulation can readily be calculated to

considerable accuracy by solving a relatively simple linear system. The truncated

infinite set of numbers which one obtains converges to zero only slowly. The bulk

of this set describes the solution for the planar wing (this solution we have chosen

as our refer-nce solution; its chief characteristic is the wing tip svigularity).

With any other solution, the part which is of primary enginecring interest is the

pressure distribution. over the inner part of the wing; this distribution is contained

in the void set, that part of the numericil set which is void of the tip singularity.

This void set converges much more rapidly.

The analysis by which the details of the structure of the exact solution were

derived has been described elsewhere 25. The leading terms2 were used3 to cal-

culate the initial shape of the vortex trail (and thus to indicate necessary corrections

to earlier analyses). The complete solution is described in Rtef. 4; certain results

of more general mathematical interest aire presented in Ref. 5.

In Section 2 of this paper, the here relevant results of the analysis are

reported. In Section 3, the numerical methods are dercr*' I by which we have

calculatod the reference solution to a very high accuracy; though this aiccuracy is

not normally required, it serves to demonstrate the details of Its struc re.
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Further accurate solutions, obtained with relative ease once the reference solution

is known, are presented and discussed in Section 4.

An alternative simplified approach, useful if one is interested in the solution

ov.er the inner part of the wing rather than in the tip singularity, is presented in

Section 5. Sample pressure distributions are discussed in Section 6.

The methods here presented allow one to invcstigate a wide variety of

problems of technical interest. The present paper is confined to cases where the

given downwash is symnmetric and doer not c,:tain camber. However, this special-

ization is not essential.

2. Analytical Results

(a) Pressure Distribution

We describe the pressure difference p between lower and upper wing surfaces

by a non-dimensional pressure function p. From p the singularitics in p of orders

t- at the leading edge (I. e. ) and the trailing edge (t. e. ) have been removed:

(l~)Zp/q(.1

Here q is the dynamic pressure and the local chordwise coordinate such that

The given boundary condition is the downwash wV on the wing. V is the

forward speed, w=tar4, .L the local incidence. Consider the two limit cases for

which solutions are known, the infinite uniform wing (2-D; the two-dimensional case)

and the slender wing (s. w. ), specifically here the elliptic s.w. in the limit k- 0,

where k the axis ratio of the ellipse. The nature of the chordwiso distribution i()

differs distinctly between these two limits. Assume w constant, and normalize

to w=l. One then has the following comparison:
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2-D 4(1-1) 211 -0.5

B.W. if 0) 2k 4

where Cis the local lift coefficienit, the local center of pressure.

In 2-D, ý(O is a polynomial.1 of order (n+l) in I if w(f) is a polynomial of 4

order n. Such smooth distributions •1•) we call 2-D type distributions. In contrast,,

the s.w. distribution has a kink at the wing axis P0.

On a wing with finite aspect ratio and with rounded (parabolic) tips, 2-D type

distributions must prevail over the inner part of the wing span but the kinked s.w.

type must exist at the 0ip itself. Indeed, this is confirmed by the exact solution.

The latter is derived from the Yinner formulation for the distribation of the presure

function p over the circular wing:

(dr 4 cosZ1q+k."- 0 X= 0

Thus • is i)uilt up from clenentary solutions (none of which is physically meaning-

ful individually) with unknown amplitudes C . Coordinates and notations in (2. 3)

are defined in Fig. 1. * In addition to (2. 3, we have for i the Kutta condition

Ournation differs somewhat from that of Kinner Contained in (2. 3) is the

assumption that the dowvnwash which is given on the wing is both symmetrical and

without camber

w( ,y) i w(y) - w(-y)

Kinner shows that, split off in a suitable manner, the camber part ic of a general
c

pressure futction is trivial, and zero all along the wing edge. Also, the analysis

can readily be rcwrittvn for the case that w(y) is antisynnietric.

Ai



5

Pt. e. P, -ir<cio) 0 (2. 3a)

Integrating (2. 3) chordwise, we obtain the local lift coefficient

03

Cxy :C2tP&L (2. 4a)

and the local. moment coefficient 2It

Z(y)CA(y) = -WZ ( . A+l A (Y) (2.4b)

The P are the Legendre polynomials, the 2their derivatives (resp. th. ultra-

spherical or Gcgenbauer polynomials)

SI cd
A =(X+])(2-+l) dyPni 1( (2.4c)

Both are symmetrical and orthogonal, normalized such that

P[•M(-) = fý (+-l)= 1 (all9A) (2. 4d)

Integrating also spanwise, one obtains the vector of the total lift

cL =.8  ; = -Cl/3Co (2. 4e)

It is given by the first two amplitudes alone.

Before turning to the analytical results which arise from combining (2. 3)

and (Z. 3a), let us review two graphical presentations of representative results and

relate them to (Z. Z). These results, Figs. 2 and 3, are for our reference case,

the planar wing normalized to w(y) = 1.

Shown in Fig. 2 is a relief of 5 over the right half wing. Notir~g the result

both of lifting line theory (large span) and of s. w. theory (small span) that the

lift distribution over planar elliptic wings is an ellipse, icnd assuming that this

would hold also for the circular wing, wc would 1ia'e C const. = CL. In Fig. 2,

CL = 1. 790.. . Using rounded-off numbers, we would thus expect ýl. e. =4CL/¶=2. 28

from Z-D in (2). The actual curve in Fig. 2 lies somewhat higher; this i-.
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due, mainly, to the fact that the chordwise distributions are not lineara

(as in (2. 2)) but are concave curves. Hlowever, they are 2-D type curves as

expected, over the inner part of the wAng span.

For the wing tip we should have Pl. e. I = PT 2CI1  3.58 from s.w. in

(2. 2). The actual value in Fig. 2 4. PT = 3. 19. That this value is distinctly

smaller than predicted is not a failure of s.w.. Rather, it turns out that (as was

*I already likely from Ref. 1) the correct lift distribution over planar elliptic wings

is not an ellipsu.

Additional information about the transition to the tip is provided by the

" curve for t, Fig. 3. Over most of the span, t is not much forward of the -- chord

7)oint = -0. 5. The tranisition to the tip value ..T/4, see (2. 2), occurs rapidly

and with a vertical tangent.

The singularity at the tip which is illustrated by Fig. 3 is not apparent in

the curve k e.aof Fig. 2, but a singularity in p occurs as the tip is approached

along the wving axis ýO

A measure for the amplitude of the tip singularity in j is the tip value iT"

For it one finds, considering that due to (Z. 3a) the two sums in (2. 3) must equal

each othcr at the 1. e.,

A00PTI = ]ira (2Ak+1)C, Z+ 1 (2.5)
A -1. +0 A=0

One also shows that, moving toward the tip along any half-ellipse t =const.) one

reaches

lim P=const. 0JVT I i (Z. 5a)

This is in agreement with the s.w. distribution j(ý) in (2. 2). According to (2. 7),

the p curves of Fig. Z over the half-ellipses tn: -0.8, -0.6, .. reach thc tip

vertical at equidistant points p 0. 8 PT, 0.'6, 1 ,, ,.. All those for P0 reach the

same end point p=O.
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Due to (2. 4b), the C2, 4+ may be called the moment amplitudes; according

to (2.5), they determine iT For the lift amplitudes CZ we bave the zero sum

condiLion

Cz2 1C- 0 (2.6)

Utilizing the orthogonality of the circular functions, one finds from the

equality along the 1. e. of the two sums in (2.3) that the two sets of amplitudes are

fully interdependent and equivalent. Introducing the abbreviation X=(A+1), we have

Co IC
2iC•l=z• .--- (all A) (2.7a)

t s x zx+lif X=O)

The transformation (2. 7u) leads Lo a set which automatically fulfills (2.6).

As an example, set CI==; C ÷+I=0 for A10. Then

"TIC0 = 2 ; IC 2o = -(1z-1/4)il (2.8)

One readily shows that this set fulfills (2.6).

The set (2. 8) is one of a sequence of possible elementary sets which one

might use to build up the comp)ete solution for a given dowrnwash w(y). Choose an

integer #0 and let

C2A+1 0 ; 2#\+ = Ofor.\/A* (2.9)

The pressure distribution which results is characterized by its 1. e. distribution

l. e. sina

and is thus a spanwise wavy distribution. We will further discuss the elements

A* in Section 6.

ft
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The elements A* arc not an opthnum choice because one requires an

infinite number of them to produce a downwash w(y) which is regular at the wing

tip. We generally denote by 1. any elementary set which we use to build up the

solving set C2 , and we always require that EK individually fulfills the zero sum

condition (2.6). From (2.8) arises the suggestion to consider the sets

E0L (r) ; 0, - (I 0) (2.10)

Here denoter the Riemann ftRction, see e.g. Table 23.3 of Ref. 6. We call the

acts E, the rational sets; we will also have to use logarithmic sets.

According to (2. 7b), the set EK is the leading set. Thus

c - a-+ )I (K/0) (.1

In (2. 11), a2 is an unknown amplitude, and the rema'nder Rk is defined by the

condition R =o(' )." One can show that RL• does not contribute to the tip value

and thus does nut contribute to first order to the tVp singultrity. Hence we are

mainly interusted in the elementary pressure function ip, which arises from inderting
2 22EX into (2. 7a) to dete•mine its corresponding set C 2k1 1 .and then inserting both

and C 2  into (2. 3). For j) we have inalytical results for both the 1. e. and the

wiA'g a)-is 0:

z.I.e•. s (i'

ý2'axis 4~ 112 f (-Y )]/i 2

4y [2log(1/yj) + I+ j2loB(I/ j) + .

The futction f here is the dilogaritlun, see, e.g., 27. 7 of Ref. 6. The two functions

(2. 12) exhibit the characteristic properties. of p in Fig. 2: a smiooth curve along

the 1. e., a vertical tangent at the tip in Paxis
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From (2. 11) and (2. 2) follows 8T -- 81fa2 . From (2.2) and (2.5a) follows

PT 2c A(l). Hence
c(l) = = 4T)*a (2.13)

(b) Structure of the Solution

We describe the given downwasl w(y) by a set of downwash coefficients w

w(y) -K (s+1)(2s+l)w P2 (y) (2.14)
s=0

where the P. (y) are the Gegenbauer polynomials of (2. 4c) and are subject to the

normalization (2. 4d). Reversing (2. 14) we have

w= (4s+3) T { *Sw(•) P 2. (y)dy (2. 14a)
0

For example, in our reference problem

w 0  1 ; wa/ 0 0 ifw(y)!1 (2.14b)

The relation between the sets w5 and C 2Vis:,'

w =lrC 2 +1 + (2.15)

where

f-;j•(-.) O(,+A()(•+•) .2..1a)

The set C28+1 is given by (2. 7a), with A replaced by s. The operator S1 is of

higher order; the abbreviction t=s+i corresponds to X.

One obtains information about the structure of the set C2 t by observing

that in all technically meaningful cases the downwash wa is regular at the tip. F om..

this follows that the set w8 must converge more rapidly than any power of (1/ s).

* This form is considerably inore convenient analytically than the original pre-

sentation, Eq. (60) of Ref. 1.
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To this requirement we refer as the tip condition for the set ws.
The C.s+l which arise fromn the EK and which thereby occur in (2. 15) are

generally 0(s' ); henLce there have to be certain relations between their amplitudes

ar such that terms of this order (as well as of higher orders) cancel out. The

investigation become.,s fairly intricate because of the occurrence of logarithmic

sets in addition to rational sets; on the other hand, it is those logarithmic sets

which enforce certain useful general relations. The result4 we write here in the form

S4 3log21"-C~l = (t+) 102 4 az + Rt1211

+ý (6. 16

Abbreviating, we write this as

-C11GC•(l)4 R4 (2. 16a)

and describe it by saying that C is composed of a gencral set G., common to all

solutions, and a remainder set RK.. For the unknown amplitudu c•(I) of GC we have

(2.6) with (2. 13).

Between (2. ;I) and (2. 16), certain elementary sets E have been transferred,

by means of the tip condition for the set ws, from the remaindar R of (2. 11) into

the general set G t On principle, one could continue this process. HIowever, this

would serve no useful purpose. Namely, the remainder R of (2. 16) (which differs

of course from that of (2. 11)) contains, In addition to further general sets, also

specific sets which describe the solution for the specific given downwash w(y). The

-4 -4orders of magnitude of the two leading specific sets are 0(' logv*.) and 0(v.

There is no practical advantage in knowing general sets which are of higher order

than these specific scts (the next general act is presumably O(K 5 log 2 )).

We will require also some information about the structure 'f the sets CZA+l.

If we rewrite (2. 16) in the alternative form

1og ]a +Rý (2. 16b)

ZKT _ 1f-A 4i
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we have again Rt- O(K7 4ogtc) and have for large

+r C, 2-+ f1 log 23 RZ - 2~ 2 R~ 3 ~
l (2. 16c)

-3azlogA/ 164 4  + 0(2/X4)

The set LA is a logarithmic set which is related to tho j'(digamma) function; it is

defined by

LA A ++ " (2. 16d)

." 1ogA

(c) Span Loading and Tip Distributioni

In order to translate (2. 16) resp. (2. l6b) into a formula for the lift coeffi-

cient CA(y), we need, according to (2.4a), the functions

e(y) - EMP2|(y) (2.17)

which are created by the various elementary sets in (2. 16). We have analytical

results only for the two leading sets5

e2 (y) = +ylo(2/ Y) + 06')
(Z. 17a)

e 3 (Y) = y2 log(2/ i) + 06y2 ) 21a

Using there in (2.4a with (2. 16), we obtain

LiY =1 + *l./8)jlog(2/j-)j CA()+() (2. 18)

A useful application of this formula is illustrated in Fig. 4.. Numerical

summation of (2.4a) becomes cumbersome near the tip because of the denominator y.

Shown in Fig. 4 are, near the tip and to a large scale, the approximate curves which

have been c alculated truncating (2. 4a) after N -- 20, 25. .40 terms.. The last two

curves have converged well enough 4o the left, that is, inside y=to. 96, but all curves

show increasing waviness toward the right and turn up toward +oD at the tip. This



remains true for all finite N. Also shown is the asyniptotic curve, the term with

C,0) of (Z. 18). To obtain a fairly accurate curve Cx(y), one has to match the

asymptotic curve with the curve N=40 near y=O. 98 and has to smooth out the latter

curve between y=O. 96 and 0. 98.

We insert herc an illustration, Fig. 5, of a similar matching process for

the chordwise distributions p(r) near the wing tip. The curves shown represent the

result of using in (2.3) the first N=40 airiplitudcs of each set, C and C Z+ I of our

reference solution. Again convergence deteriorates as y -4l because of the

denominator j. The largest error due to truncation occurs along the wing axis.

Here the points due to ý, alone, see (2. 12), are shown as circles.

When y=O. 980, curve and point almost coincide. The truncation error is

still small, and the leading contribution P2 still almost equals the total. As y is

increased, the latter becomes increasingly more correct while the trunca.tion errors

increase. The slight waviness in the curve for y=O. 995 is presumably not genuine

but due to trtuncation errors.

Both Fig. 3 and Fig. 5 show that the transition from the kinked tip distri-

bution to the smooth 2-D type distributions occurs rather rapidly.

With Fig. 6 we retarn to span loadings. The reference planar solution is

showvn, and all other curves are normalized to its tip value Ce (1). Illustrated is

the role of the leading terms in (2. 16). The curve C (y) represents the contribution

of E;; in it, the factor (1/8) of (Z. 18) is replaced by (1/4), see (2. 17a), and

accordingly it cuts over the correct curve near the tip.

The downwash which belongs to E2 is shown in Fig. 7, denoted as w2 . It is

negative infinite at the tip; that of the elliptic lift distribution, not shown in Fig. 7,

is positive infinite at the tip.

In Figs. 6 and 7, basic refers io the simplest set C 2 • which produces a

finite value w(l):

-CZKbasic ----- 3 + Xa 2 (2.19)
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The first two terms on the right cancel between them a term 0(s'3 log s) in w (and

produce the correct factor (1/8) of (2. 18)). Their combined downwash is shown

in Fig. 7. The third term in (2. 19) is added to cancel also the term 0(s3 ) in ws.

The amplitude i4 which achieves this is

14l0 .+ YM2
- =O+5'--) 0. 3741083. (2.19)

The bauic downwash curve in Fig. 7 is seen to be almot a horivzontal line, but it

has an infinite tangent at the tip. The curve basic in Fig. 6 goes asymptotically

into the planar curve at the tip.

The point marked collocation analysis in Fig. 6 is determined from numeri-

cal results 7 , calculated by means of an unusually careful spanwise integratioL.

The collocation results coincide with the correct planar curve over the inner part

of the wing span. It deviates at the tip by 5. 4%; this deviation arises because

collocation analyses assume an elliptic type lift dirtribution and thus a finite slope

in the Ct 2(y) curve at a parabolic wing tip.

The pressure formula (2.3) and the result (2. 16) are specific to the circular

wing, but insofar as (2. 16) can be translated into the analytical form (2. 18), it

4can be generalized to apply to arbitrary wings with parabolic wing tips . For such

wings the local lift becomes

(y- + (;)2logv.... c (l) + R(y c(y)q (2.20)

Here b is the wing span, r the wing tip radius, c(y) the wing chord. The remainder

function R(y) may be expected to have a finite tangent at the wing tip.

3. Numerical Procedure

For a given downwash w(y) one finds the set w8 by means of (2. 14a) and

has in (2. 15) an infinite linear system fl-. calculating the sct C... Solving this
N

system aftt.r truncating it to N equations, one obtains N values C 2 which represents
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a truncated approximation to the correct .set C2 •.

Convergence toward the correct set C ZU slows down as N is increased

because the set C itself, being a reciprocal progression, covverges with in-

creasing slowness as R ->co. To improve the convergence, one calculates first

the set C For this purpose (2. 15) is rewritten as

1 (31)

The matrix cis almost the unit matrix; the numubers (wbl*ch correspond to the

operator SI in (Z. 15)) aro small. A short numerical table follows:

0 _o 2 3

0 0.9112 -0.0470 -0.0315 -0.0236

1 -0.0117 0.9902 -0.0078 -0.0064

2 -0.0039 -0.0041 9,9964 -0.0032

3 -0.0018 -0.0021 -0.0021 0.99._ 1

The cO are given by

= MS - (M-N)Ls if As (3.2)

ST - [4i/(4g+1)]S if A=s

Hero

M 2N

L(s,A) ZL + (1/21)- (/2;) - 2L

S zlog2 - " (3. 2a)
S4 - (Zs+I)(s

The (Zs-l)z (dse()z

i The set Lsis defined by (2. 16d).

I|
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Having calculated the set C using a truncated system (3. 1), one uses

N
(2. 7b) to calculte the corresponding truncated set C

The complete procedure is easily programmed for digital computation**.

No large number N is required to obtain engineering accuracy. One obtains an

7
accuracy of about 10' with N-40 i•n the reference problem (2. 14b); of course, the

accuracy goes down, or N has to be increased, if higher coefficients w8 occur. With

N=40, one has more than sufficient accuracy for most purposes over the inner part

of the wing. If one wants to match near the tip, as in Figs. 4, 5, one needs also

the amplitude a 2 of the tip singularity. If no unusual accuracy is required, it is

sufficient to assume that R. =0 in the highest C N which have been calculated; then

a 2 is obtained directly from (2. 16).

4. Calculation of the Reference Solution L
(a) Approach

Wc have determined the reference solution plus three further solutions to

very high accuracy in order to definitely determine and demonstrate the details of

the structure of the solutions (and also the powerfulness of the available methods).

We used up to N=60 equations, used 12 decimals in the results to extrapolate to

N=co, lost 2 decimals in the extrapolations and performed the further calculations

with 10 decimals. The resulting sets C .. are listed in Tables I and II, rounded to j
8 decimals.

The C N which are calculated directly from (2. 15) decrease as N Is increased;

those calculated via (3. 1) and (2. 7b) increase with N. The two different results

thus establish reliable (though not overly narrow) bounds.

** A program for the UNIVAC 1108 which delivers bothCN and CN.,ZA+ wthN

a variable, can be obtained from the author.
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It is casy to extrapolate to N=co results which converge like geometric

series. In the present problem behavior like reciprocal powers of N was more

likely (see Appendix E of Ref. 8) and was in fact indicated by the numerical results.

For the CZ 1+1 , we used successfuly the following principle: Assume

f(N) f f(o) - A/N T  (4.1)

where A and r are unknown constants. Then to second order

? (N) =QN+ 1) - f(N- 1) = ZrA/Nr+l

Thus

A (N) (M/Nlr ýI

from which one finds r, and

f(c) - fi(N) + Nh(N)/r

The point now ie that, while we do not know if (4. 1) correctly describes the dependency

o C+ on N, the same procedure works fairly well if the term on the right should

be.AlogN/Nr, for exa"mple. In fact, this seemed to be the case, with r of the order

r=3. By performing the evaluation wiýh several values M, one obtains information

about the validity of the assumption made and about the accuracy of the resulting

value f(M).

The set C2,, required a modified approach to be described below. The final

set C2+ was used, to determine the ampoitude C4(l) of the tip singularity.

(b) Outer Solution

We call the amplitude C1 (1) the outar solution; it has to be determined by a

matching process. The difficulty of matching in terma of CA(y) is MJlustrated by

Fig. 4. A more definite approach is provided by the sum condition (2. 5), which we

write here in the form

0 N+l

One visualizes that one could calculate S(N) for a number of values N, plot these

over u=(1/N), and extrapolate to the origin u=O. The end value of the extrapolation
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curve would then be C0 L). However, we know from (2. 16c) that the leading

elements in the set to be summed have the form

D D0 log)A + D1  D2 logh+ D3
(24+1)c 214 - (2• 31 + 2+ -- + (' 4.3)

Therefore A(N) behaves like ulogu: S(N), plotted over u, will have a vertical

tangent, and extrapolation is unreliable.

To eliminate this difficulty, replace (4. 2) by

c,(0) S*(N) + Ae(N) (4.4)

with

S :(N) = S(N) + 4 N(ZN+I)CZN+I 4W4a)

Then, using formula (A4) of the Appendix
*(N =4N+3 2 N

A* (2)=4N - Do- [(log N- •)D 2 + D3  N (4.4b)
(2N+ 1) (ZN+ 1)

The coefficient DI has disappeared from the leading terms, and the curve S*(N)

has the form C,(l) - C(u). This curve was used in Ref. 2. It is shown at the far

left of Fig. 8; the error in its end value C.(1) was about 10

The marked improvement which is illustrated by the two main curves of

4Fig. 8 is due to matching with new analytical results . According to (2. 16c)

= C= (4.5)

Inserting at first only D0 ibtto (4.4b), we replace (4.4) by

S4N+3 ]+I
C•(1) = S*(N1)/ 1 1 (4.6)

with constants a and b. The first term on the right we denote by S*/[J. Its curve

in Fig. 8 has to have a horizontal tangent at its origin Ct(l).

The lower curve in Fig. 8 has been constructed using the original sets

C 1 2A~rather than the extrapolated set; this curve must reach the correct origin

C,(,) but we do not know if it has to have a horizontal tangent.
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The upper curve was calculated using the final set C up to N=40.

(Accuracy deteriorates when N becomes large because of the factor N2 in (4.4a).)

Disregarding all higher order terms in (4.6), the three constants Ct(l), a and b

were determined such that the resulting curve passed through all points (1/N). The

agreement between this curve and the calculated points extended down to N=5, far

to the right of Fig. 8. The origin of this curve is C(1) = 1. 5930904..

This agreement, while it tends to be reassuring, must be somewhat coinci-

dental, however; it is highly unlikely that the higher terms in (4.6) should be

negligible down to N=5. Indeed, we shoeAd correctly have a.--D 2 , see (4. 5). This

condition was not quite fulfilled, and an adjustment had to be made, allowing for

small but finite higher ordor terms in (4.6). The adjustment led to the new value

Cz(1) = 1. 5930884.. . Both new values are marked in Fig. 8. The smallness of

the difference between them may be taken as an indication or the degree of accuracy

which had been achieved.

In Table I the value a 2 = 0. 1267740 is used; to it corresponds C,(1) = 1. 5930890.

In the context of Table I, the number v.. has to be treated as an exact number; however,

the listed value is not claimed to be cr-::ect beyond the accuracy range which is

indicated by Fig. 8.

(c) Listing of the Solution

The reference set C is listed in Table I where it is denoted by C2 0
2K 2,0

We discuss first how this table was calculated.
Ss u c e si e et NC 1 a Nd •

Two successive sets C and C differ because of two different reasons.

One, the sets CN+I and C2hN difer. Two. ".e new end ter.m C2N enters in (Z. 7b)

when in calculated. The second causc; has by far the larger effect. Therefore,

we wrote for N large

2 NC NCN N - 1 I 2N•+ I 4 7
Ch C 1 e) (times if i(no) (4.7)

The number £is here introduced to take care of reason one.



19

We found that 6 changed little with x and less with N. If one assumes that,

N 3
as N increases, f remains constant and C2N+ I behaves like log./ X (compare (4. 3);

the constant D, is small in the case of the reference solution) one can sum the

differences (4. 7) to infinity, and thus obtains CU. Doing this for both N=40 and

N=60, we found that our results were the same within our accuracy requirements

(the agreement began to deterforiatc beyond x=25 since K approached N=40, but

results beyond X=25 were not required).

Table I lists C2. up to R=15, and lists the remainder RK which was cal-

culated by means of the listed value a2 . The remainder RA is broken down further

in the manner shown (L. is again the logrithmic set defined by (2. 16d)), and a

final remainder Rg is listed in the last colunn. This column is zero from k=15

onward.

The constants b4 and c4 were determined by means of the three conditions

(a) R = 0 ; (b) R 0 ; (c) R = 0 for Kp (4.8)

p 0 '

Here p is a number which has to be determined by trial and error. One chooses

p and determines b4 and c4 , using conditions (a) and (b). The zero sum condition

(2.6) must apply to the set R. (that is, if both analysis and numerical work are

without error) because it applies individually to all other sets in C... Hence the

sum of all R. from p+ l to co must be zero when (a) is fulfilled. However, this

does not insure that (c) is fulfilled. Rather, if p was chosen too small, the Rl

beyond p will describe a wavy curve about the zero line.

On the other hand, significant decimals are lost, and the constants b4 and

c will be ill-defined, if p is chosen too large. In fact, it is not possible to

determine these constants very accurately; though seven decimals are listed in

Table I, the last decimals should not be considered reliable. A small change in

b and c4 will affect the first few listed values RA4 ; however, since these first few
values almost cancel each other, the changes will cancel out entirely, and the

validity of (4. 8) will not be affected.
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On the other hand, the fact that 1i was possible to find p, b4 and c4 such i

that (4.8) was fulfilled to 10 decimals (allowing for rounding-off errors) and that the

set R& converged smoothly and rapidly: this fact can be considered an overall con-

firmation of analysis and numerical work. (The value p which we used was p=2 0 .)

The set CZI., 0 converges slowly; written out to e3ght decimals, it would

extend to about 4 = 5, 000. Table I demonstrates taia, knowing the structure of the

solution, one can store it in form of the short set Ry plus the three numbers a2 ,

b and c4 . (These numbers have to be treate• as exact numbers, of course, when

one uses them to reconstruct the set C2, . The stored nmbers contain all the

specific information about tlhe specific solution; the bulk of the numbers in the

infinite set C2 U 0 describes the general tip singularity.

We close thissection on the reference solution by noting also the values

CL, 0 and IL, 0 which arise byg means of (2. 4e). They describe the vector of total

lift for the planar circular w-ig. A fair number of approximate values are given

in the literature, and sonme of tht differences between these are sizeable. Our

results
CL, 0 1. 790023 03 ; " 0 0. 52085758 (" 1~4.9)

should be reliable to less tUmn one unit in the last decimal given.

5. Calculation of Additional Solutions

(a) Procedure

To engineering accuracy, solutions for a given downwash w(y) are obtained

directly from (3. 1). If one wants very high accuracy in order to treat more

details of the soluti on, one can make use of the given reference solution C to

simplify the numerical procedure. Write instead of (2.16)
"2C1 = "XC 2 , 0 + H• (5.1)

Here C2,K 0 takes the place of the general set GA. In order to insure that the set

H. plays the role of the remainder K&, we have to determine the factor X such that
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a2 = Xa2,0 (5. la)

The leading set in HK is then again 0('-4logc.

We write H, rather than R. in (5. 1) to indicate that there is a difference.

The set RX is a remainder; it coni-ains the speci.c rcts which describe the specific

solution C., but it contains also those general sets of higher order which are not

listed in the general part of (2.16). On the other hand. the set kl3 is -foid by

definition of all general sets which might be transferable from Rb into GA. The

void set HaL is that specific signature of the given downwash w(y' which distinguishes

C from C2M O

The advantage of replacing (2. 16) by (5. 1) ir that it is much easier to

determine the factor X than to deterrrmne the amplitude a 2 . Our numerical pro-

cedure corresponded essentially to (4.7). We calculated sets CNa CN

to N=60 and determined a preliminary value X by assuming in (5. 1) that HN was
negligible for RAN. This allowed one to calculate HN and to use it in the ace of

N N '
C., on the left. of (4.7). In the term which then corresponds to C 2N+I on the right

of (4.7), the logarithmic term with D from (4.3) has been eliminated by (5. la),

and the rational term-with D1 (no longer small) has become the leading term. This

simplifies the summation, and hastens its convergence. The new extrapolative

corrections were generally smaller than those of the reference solution.

The results are listed in Table II in a form corresponding to Table I:

"C2q, nv = 4 H = (4L 9 c41 K (5.2)

Here n is the numbur of the solution, and the suffix v denotes its void part. To

find the amplitudes b 4 and c4 requires at process corresponding to (4. 8). A slight

complication arose from the fact that tht calculation had started from a preliminary

value X. We had to determine the effect of a unit change in X and had to adjust X ,l

by linear superposition such that the final set H converged properly.



22

(b) Sample Results

If one stores the solutions for a number of linearly independent downwash

distributions wn(Y), one can compose the mem1bers of a class of solutions as

required. A logical choice for the w n(y) are the Gegenbauer polynomials:

Wn(y) = 2•"n(y) (5.3)

The corresponding downwash coefficients ws are from(2.14)

wn.,a = [(n+l)(2n+1)]' w 0 fo, s1 'n (S. 3a)

Our reference solution fits into this system as the case n=O. We calculated in

addition the. solutions for n=l, 2 and 3. These are listed in Table I1.

The downwash wn(y) is given in Table II in the form

Wn , v(y) = Wn(Y) - X (5.4)

The complete solution C2 ' n is given by

C2.Y, n 2 C + C
n 2 q,0  2)(,nv (5.5)

The void solution C2 • n is obtained from Table II by means of (5. 2).

In the columns of Table U, there is always a sign change between I=n and

X=n+l. The numerical values in the sets HK increace as n increases, and conse=

quently the listed sets become longer. (We used p=25 in (3. 10) in all three cases

of Table J1.)

The void span loadings CA, nv(y) which belong to Table II are shown in Fig. 9.

They appear to have finite tangents at the tip; however, this has not been investi-

gated closely. An interesting observation of physical interest is the following: one

can form the ratio between two integrals over the wing, the total lift and the integral

over ohe downwash momentum. This ratio turned out to be almost invariant between

the reference solution and the three individual void solutions of Fig. 9; the r' aximum

variation was less than 176. It appears that, as far as the total lift is concerned,

the details of how the downwash is distributed over the wing span arc of negligible

kL
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importance; they do not seem to affect the outer flow which determines the total lift.

The ratio varied somewhat more when the complete solutions, Fig. 10,

were compared. Small differences between large numbers occurred in the super-

position, and the lift-mornenturn ratio was found to vary from 0. 895 for n=0 to

0.821 for n=3.

Shown in Fig. 10 are both the downwash distributions w n (y) and their span

loadings C n,(y). All the latter curves form a downward hook on approaching the

wing tip, reaching a vertical tangent at the tip itself . However, on the scale of

Fig. 10 this hook is no longer visible when n=2; even though the bulk of the set C2M

still represents the tip singularity, the latter now plays a minor role in the span

loading curve.

The scale ratio between wn and C in Fig. 10 is so chosen that w0 and

C have roughly the same overall magnitude. For n/ 0, the curves are wavy,

and the wave amplitudes in C are seen to be distinctly smaller than the cor-

responding amplitudes in wn. Each amplitude ratio corresponds roughly to the

ratio between half-wavelength and wing span. This is what one vould expect from

either lifting line theory or slender wing theory; according to either, the lift

coefficient becomes proportional to the aspect ratio when the latter becomes small

, enough, in agreement with our observation, supposing only that one can interpret the

length of a half-wave as an effective wing span. That one can do this (roughly) is

not entirely unexpected, but it is of interest to see the point verified.

Lifting line theory overpredi cts (at small aspect ratios) by the factor 2.

This is illustrated for n=3 in Fig. 11. Thus Fig. 11 implies that the correct result

corresponds closely to what we would expect from slender wing theory for n=3.

On the other hand, there is no slender wing type analysis available to handle the

case n=3. A collocation analysis for n=3 would be feasible but would be rather

cumbersome and would not necessarily be considered reliable. How many chord-

wise modes would one have to use with spanwise waves this short? From this point
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of view, and in view of the distinct difference in the character of the chordwise

distributions in (2. 2), it becomes of interest to take a look also at the pressure

distributions. This we will do in Section 7.

6. Alternative Elements

An alternative to the set w (y) is the set A* which was defined in (2. 9). Ifn

one sets 11C Wn, n' then two corresponding elements A*=n differ by the effect

of1 according Lu (2. 15) resp. by the contribution of c, according to (3. 1). For

the element A*, the set C2•K in immediately given by (2. 7b). The downwash w(y)

which belongs to )* does not fulfill the tip condition; on the other hand, we saw in

Fig. 10 that the tip singularity becomes less and less visible as n increases, and it

is illustrated by Fig. 12 that the two elements become inc'•casingly more equal

over an increasing range of the wing span.

The downwash distributions A*, calculated by means of (3. 1) and (2. 14),

are shown as full lines in Fig. 12. All A* curves turn down to w(l)=-Ow but, since

the downward turn occurs closer and closer to the tip as A* increases, a finite

limit value w(l-0) is built up with an infinite number of elements A*. Also showr.

are (as dashed lines) the distributions w n(y) = %1n; there is a noticeable difference

between the two elements when n=O, a small difference when n=1, and no visiole

difference (except directly at the tip; not showvn)whcn nQ2.

The set A* can be useful because of its analytical simplicity if one wants

to investigate, for example, the local effect of a disturbance or discontinuity in

w(y) on the inner part of the wing span. In such a problem the higher ws plays the

important role, and for these the local difference between the two sets of elements

becomes entirely negligible. Analytically the two sets differ, of course, in that

the A* elements do not exhibit the complications of (2. 16); howecver, (2. 16) describes

the tail behavior which produces the proper tip singularity in the n-elements. The

amplitudes C 2K and CO2k+ 1 with aA s are those which essentially desribe the local

pressure distribution, and these hardly different between the two types of elements.
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7. Pressure Distribution

The pressure distributions in Figs. 13 and 14 represent the cases N*=l and

0*=3 but would not look noticeably different if they would represent the cases n=1

and n=3.

Like Fig. 2, Figs. 13 and 14 show relief diagrams of p over the right half

of the circular wing. The left halt of the wing is not shown in Fig. 13; it is shown

in Fig. 14 to exhibit the wavy distribution of the wing incidence. In both figures,

the left wing half is stretched into a rectangle for better visibirity of ý; furthermore,

the rectangle is cut apart at y=O. 9. The finite chord at the wing tip which is pro-

duced by the stretching operation exhibits the linked-linear character of the

chordwise distribution at the tip.

Part of a vertical plane through the stretched leading edge is showal by a

line of constant p (the scales of p in the two figures are arbitrary) and by vertical

lines of constant y.

The most striking insight of technical interest from Figs. 13 and 14 is

that the waviness of w(y), while well reflected in Pi. 0. in accordance with (2. 9a),

has disappeared almost over the rear part of the wing in Fig. 13, and completely

in Fig. 14. This stabilizing effect is the cause for the smallness of the wave

amplitudes in CX, n in Fg•. 10. However, it is of more gev.,-l interest; while it

is shown here on idealized models, it must be of sigaificancr, for the influence of

any disturbances of short spanwise extension.

The chordwise distributions of j in Fig. 14 are not l-'rkcd (except, of

course, at the tip itself) but they are fairly complicated curves. It had been shown

in Ref. 8 that for the planar circular wing (n=O) already two Birnbaumn-Glauert

chordwise modes yield an excellent approximation. For the case n=3, only two

modes (i. e., approximation by a parabola) would clearly be insufficient.

To the degree that we can interchange A'•= 3 and n=3, the difference between

the complicated distribution Fig. 14 and the reference distribution Fig. 2 is

LI
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contained in the column C2K, 3v of Table If. This remark illustrates how the bulk

of the complete set C., describes essentially the tip singularity, while the details

of p over the inner part of the wing are fully contained in the much more rapidly

converging void set C2K, v.

8. Conclusion

Since the nature of the pressure singularity at a parabolic wing tip, and in

particular all required details of the structure of exact solutions for circular wings,

are now known, it has become possible to use numerical rcsults with confidence.

One knows about their convergence behavior and can match with the asymptotic

wing tip solution. A simple procedure for calculating numerical solutions for the

circular wing is described. It is so far specialized to symmetric downwash dis-

tributions without camber but could be generalized to deal, for example, with an

axisymmetric fan-in-wing configuration.

Four sample solutions have been calculated to very high accuracy and have

been tabulated. The solving sets converge slowly; their bulk describes the tip

singularity, typified by the solution for the planar wing. This has been sTlit off;

the specific solutions which remain are void of the tip singularity and converge

rapidly. The sample solutions exhibit details of the mechanism of lifting flow

which are of technical interest.

The numerical technique which is described in this paper allows one to

investigate, for example, the pressure distribution which arises from a local

disturbance or discontinuity in the downwash. In such a problem approximation

by means of the alternative elements of Section 6 may be useful, since this

approximation becomes increasingly correct with higher order (i. e., s large)

effects and since its analytical simplicity may allow analytical treatment of the

given problem.
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APPENDIX

INFINITE SUMS

All the elementary sets E K from which the solving set C2" is built up

obey the zero sum condition (Z. 6); the leading element E 0 is thus given by

E 0- - (A.1)

Since the E, are reciprocal progressions, the rate of convergnnce of the sum slows

down indefinitely as K. increases, and numerical term-by-term summation is not

usually a practical proposition.

Some of the required sums are tabulated, see e.g. (2. 10) for the rational

sets Er. For the first set in (2. 16) vwe have from 6.3.16 of Ref. 6

4

4 Ji+ 1) = 4 le(5/ 4) +K L.399048526.. (A)

Certain sums involving L. are derived in Re f. 5; for example

rK2  7.(3)/4 (A. 3a)
2. 103599581

and

~[311(5) - l4j(Z)yf(3)j/ 4

1.115624875.. 
(A.3b)

The sum (A. 3b) occurs in Tables I and II. The sum (A. 3a) occurs in the leading

term of C2 4 +1 , see (2. 16c).

When tabulations are not available, one can use the formula

M E r12Lx -?,.dx +"(A.4)
I N x=N

to calculate the tail sum. Equation (A. 4) assumes that FR converges smoothly

and that the function E(x) interpolates EI such that E(K) E . Equation (A; 4)
, .



was used for example for the extrapolations based on (4. 7).

For the term with log it in (2. 16) one requires the sum

Co 2
= O.06505816.. (A. 5)

which was determined by means of (A. 4).

L -A. ---- --


